Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal displacement of spectrally negative branching Lévy processes (2207.12192v2)

Published 25 Jul 2022 in math.PR

Abstract: We consider a branching Markov process in continuous time in which the particles evolve independently as spectrally negative L\'evy processes. When the branching mechanism is critical or subcritical, the process will eventually die and we may define its overall maximum, i.e. the maximum location ever reached by a particule. The purpose of this paper is to give asymptotic estimates for the survival function of this maximum. In particular, we show that in the critical case the asymptotics is polynomial when the underlying L\'evy process oscillates or drifts towards $+\infty$, and is exponential when it drifts towards $-\infty$.

Summary

We haven't generated a summary for this paper yet.