Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 32 TPS
GPT-5 High 30 TPS Pro
GPT-4o 67 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 190 TPS Pro
2000 character limit reached

Generating quantum feature maps for SVM classifier (2207.11449v3)

Published 23 Jul 2022 in quant-ph

Abstract: We present and compare two methods of generating quantum feature maps for quantum-enhanced support vector machine, a classifier based on kernel method, by which we can access high dimensional Hilbert space efficiently. The first method is a genetic algorithm with multi-objective fitness function using penalty method, which incorporates maximizing the accuracy of classification and minimizing the gate cost of quantum feature map circuit. The second method uses variational quantum circuit, focusing on how to contruct the ansatz based on unitary matrix decomposition. Numerical results and comparisons are presented to demonstrate how the fitness fuction reduces gate cost while remaining high accuracy and conducting circuit through unitary matrix obtains even better performance. In particular, we propose some thoughts on reducing and optimizing the gate cost of a circuit while remaining perfect accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.