Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A construction for a counterexample to the pseudo 2-factor isomorphic graph conjecture (2207.10961v1)

Published 22 Jul 2022 in math.CO

Abstract: A graph $G$ admiting a $2$-factor is \textit{pseudo $2$-factor isomorphic} if the parity of the number of cycles in all its $2$-factors is the same. In [M. Abreu, A.A. Diwan, B. Jackson, D. Labbate and J. Sheehan. Pseudo $2$-factor isomorphic regular bipartite graphs. Journal of Combinatorial Theory, Series B, 98(2) (2008), 432-444.] some of the authors of this note gave a partial characterisation of pseudo $2$-factor isomorphic bipartite cubic graphs and conjectured that $K_{3,3}$, the Heawood graph and the Pappus graph are the only essentially $4$-edge-connected ones. In [J. Goedgebeur. A counterexample to the pseudo $2$-factor isomorphic graph conjecture. Discr. Applied Math., 193 (2015), 57-60.] Jan Goedgebeur computationally found a graph $\mathscr{G}$ on $30$ vertices which is pseudo $2$-factor isomorphic cubic and bipartite, essentially $4$-edge-connected and cyclically $6$-edge-connected, thus refuting the above conjecture. In this note, we describe how such a graph can be constructed from the Heawood graph and the generalised Petersen graph $GP(8,3)$, which are the Levi graphs of the Fano $7_3$ configuration and the M\"obius-Kantor $8_3$ configuration, respectively. Such a description of $\mathscr{G}$ allows us to understand its automorphism group, which has order $144$, using both a geometrical and a graph theoretical approach simultaneously. Moreover we illustrate the uniqueness of this graph.

Summary

We haven't generated a summary for this paper yet.