Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Hyper-Representations for Pre-Training and Transfer Learning (2207.10951v1)

Published 22 Jul 2022 in cs.LG

Abstract: Learning representations of neural network weights given a model zoo is an emerging and challenging area with many potential applications from model inspection, to neural architecture search or knowledge distillation. Recently, an autoencoder trained on a model zoo was able to learn a hyper-representation, which captures intrinsic and extrinsic properties of the models in the zoo. In this work, we extend hyper-representations for generative use to sample new model weights as pre-training. We propose layer-wise loss normalization which we demonstrate is key to generate high-performing models and a sampling method based on the empirical density of hyper-representations. The models generated using our methods are diverse, performant and capable to outperform conventional baselines for transfer learning. Our results indicate the potential of knowledge aggregation from model zoos to new models via hyper-representations thereby paving the avenue for novel research directions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.