Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NFDLM: A Lightweight Network Flow based Deep Learning Model for DDoS Attack Detection in IoT Domains (2207.10803v1)

Published 15 Jul 2022 in cs.CR and cs.LG

Abstract: In the recent years, Distributed Denial of Service (DDoS) attacks on Internet of Things (IoT) devices have become one of the prime concerns to Internet users around the world. One of the sources of the attacks on IoT ecosystems are botnets. Intruders force IoT devices to become unavailable for its legitimate users by sending large number of messages within a short interval. This study proposes NFDLM, a lightweight and optimised Artificial Neural Network (ANN) based Distributed Denial of Services (DDoS) attack detection framework with mutual correlation as feature selection method which produces a superior result when compared with Long Short Term Memory (LSTM) and simple ANN. Overall, the detection performance achieves approximately 99\% accuracy for the detection of attacks from botnets. In this work, we have designed and compared four different models where two are based on ANN and the other two are based on LSTM to detect the attack types of DDoS.

Citations (11)

Summary

We haven't generated a summary for this paper yet.