Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Leveraging Pre-trained Generative Adversarial Networks for Image Editing and Restoration (2207.10309v1)

Published 21 Jul 2022 in cs.CV and eess.IV

Abstract: Generative adversarial networks (GANs) have drawn enormous attention due to the simple yet effective training mechanism and superior image generation quality. With the ability to generate photo-realistic high-resolution (e.g., $1024\times1024$) images, recent GAN models have greatly narrowed the gaps between the generated images and the real ones. Therefore, many recent works show emerging interest to take advantage of pre-trained GAN models by exploiting the well-disentangled latent space and the learned GAN priors. In this paper, we briefly review recent progress on leveraging pre-trained large-scale GAN models from three aspects, i.e., 1) the training of large-scale generative adversarial networks, 2) exploring and understanding the pre-trained GAN models, and 3) leveraging these models for subsequent tasks like image restoration and editing. More information about relevant methods and repositories can be found at https://github.com/csmliu/pretrained-GANs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ming Liu (421 papers)
  2. Yuxiang Wei (40 papers)
  3. Xiaohe Wu (23 papers)
  4. Wangmeng Zuo (279 papers)
  5. Lei Zhang (1689 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.