Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BRACE: The Breakdancing Competition Dataset for Dance Motion Synthesis (2207.10120v2)

Published 20 Jul 2022 in cs.CV

Abstract: Generative models for audio-conditioned dance motion synthesis map music features to dance movements. Models are trained to associate motion patterns to audio patterns, usually without an explicit knowledge of the human body. This approach relies on a few assumptions: strong music-dance correlation, controlled motion data and relatively simple poses and movements. These characteristics are found in all existing datasets for dance motion synthesis, and indeed recent methods can achieve good results.We introduce a new dataset aiming to challenge these common assumptions, compiling a set of dynamic dance sequences displaying complex human poses. We focus on breakdancing which features acrobatic moves and tangled postures. We source our data from the Red Bull BC One competition videos. Estimating human keypoints from these videos is difficult due to the complexity of the dance, as well as the multiple moving cameras recording setup. We adopt a hybrid labelling pipeline leveraging deep estimation models as well as manual annotations to obtain good quality keypoint sequences at a reduced cost. Our efforts produced the BRACE dataset, which contains over 3 hours and 30 minutes of densely annotated poses. We test state-of-the-art methods on BRACE, showing their limitations when evaluated on complex sequences. Our dataset can readily foster advance in dance motion synthesis. With intricate poses and swift movements, models are forced to go beyond learning a mapping between modalities and reason more effectively about body structure and movements.

Citations (4)

Summary

We haven't generated a summary for this paper yet.