Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural Thresholding Algorithms for Signal Recovery with Sparsity (2207.09622v1)

Published 20 Jul 2022 in cs.IT and math.IT

Abstract: The algorithms based on the technique of optimal $k$-thresholding (OT) were recently proposed for signal recovery, and they are very different from the traditional family of hard thresholding methods. However, the computational cost for OT-based algorithms remains high at the current stage of their development. This stimulates the development of the so-called natural thresholding (NT) algorithm and its variants in this paper. The family of NT algorithms is developed through the first-order approximation of the so-called regularized optimal $k$-thresholding model, and thus the computational cost for this family of algorithms is significantly lower than that of the OT-based algorithms. The guaranteed performance of NT-type algorithms for signal recovery from noisy measurements is shown under the restricted isometry property and concavity of the objective function of regularized optimal $k$-thresholding model. Empirical results indicate that the NT-type algorithms are robust and very comparable to several mainstream algorithms for sparse signal recovery.

Citations (3)

Summary

We haven't generated a summary for this paper yet.