Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Deep Multi-Shape Matching (2207.09610v1)

Published 20 Jul 2022 in cs.CV, cs.AI, and cs.CG

Abstract: 3D shape matching is a long-standing problem in computer vision and computer graphics. While deep neural networks were shown to lead to state-of-the-art results in shape matching, existing learning-based approaches are limited in the context of multi-shape matching: (i) either they focus on matching pairs of shapes only and thus suffer from cycle-inconsistent multi-matchings, or (ii) they require an explicit template shape to address the matching of a collection of shapes. In this paper, we present a novel approach for deep multi-shape matching that ensures cycle-consistent multi-matchings while not depending on an explicit template shape. To this end, we utilise a shape-to-universe multi-matching representation that we combine with powerful functional map regularisation, so that our multi-shape matching neural network can be trained in a fully unsupervised manner. While the functional map regularisation is only considered during training time, functional maps are not computed for predicting correspondences, thereby allowing for fast inference. We demonstrate that our method achieves state-of-the-art results on several challenging benchmark datasets, and, most remarkably, that our unsupervised method even outperforms recent supervised methods.

Citations (29)

Summary

We haven't generated a summary for this paper yet.