Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Reinforcement Learning Approach for Finding Non-Exploitable Strategies in Two-Player Atari Games (2207.08894v3)

Published 18 Jul 2022 in cs.LG, cs.AI, and cs.GT

Abstract: This paper proposes new, end-to-end deep reinforcement learning algorithms for learning two-player zero-sum Markov games. Different from prior efforts on training agents to beat a fixed set of opponents, our objective is to find the Nash equilibrium policies that are free from exploitation by even the adversarial opponents. We propose (a) Nash-DQN algorithm, which integrates the deep learning techniques from single DQN into the classic Nash Q-learning algorithm for solving tabular Markov games; (b) Nash-DQN-Exploiter algorithm, which additionally adopts an exploiter to guide the exploration of the main agent. We conduct experimental evaluation on tabular examples as well as various two-player Atari games. Our empirical results demonstrate that (i) the policies found by many existing methods including Neural Fictitious Self Play and Policy Space Response Oracle can be prone to exploitation by adversarial opponents; (ii) the output policies of our algorithms are robust to exploitation, and thus outperform existing methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.