Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ELECTRA is a Zero-Shot Learner, Too (2207.08141v2)

Published 17 Jul 2022 in cs.CL

Abstract: Recently, for few-shot or even zero-shot learning, the new paradigm "pre-train, prompt, and predict" has achieved remarkable achievements compared with the "pre-train, fine-tune" paradigm. After the success of prompt-based GPT-3, a series of masked LLM (MLM)-based (e.g., BERT, RoBERTa) prompt learning methods became popular and widely used. However, another efficient pre-trained discriminative model, ELECTRA, has probably been neglected. In this paper, we attempt to accomplish several NLP tasks in the zero-shot scenario using a novel our proposed replaced token detection (RTD)-based prompt learning method. Experimental results show that ELECTRA model based on RTD-prompt learning achieves surprisingly state-of-the-art zero-shot performance. Numerically, compared to MLM-RoBERTa-large and MLM-BERT-large, our RTD-ELECTRA-large has an average of about 8.4% and 13.7% improvement on all 15 tasks. Especially on the SST-2 task, our RTD-ELECTRA-large achieves an astonishing 90.1% accuracy without any training data. Overall, compared to the pre-trained masked LLMs, the pre-trained replaced token detection model performs better in zero-shot learning. The source code is available at: https://github.com/nishiwen1214/RTD-ELECTRA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shiwen Ni (34 papers)
  2. Hung-Yu Kao (17 papers)
Citations (9)