Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Stochastic Algorithms for Alignment in Self-Organizing Particle Systems (2207.07956v2)

Published 16 Jul 2022 in cs.DC, cs.ET, math-ph, and math.MP

Abstract: We present local distributed, stochastic algorithms for \emph{alignment} in self-organizing particle systems (SOPS) on two-dimensional lattices, where particles occupy unique sites on the lattice, and particles can make spatial moves to neighboring sites if they are unoccupied. Such models are abstractions of programmable matter, composed of individual computational particles with limited memory, strictly local communication abilities, and modest computational capabilities. We consider oriented particle systems, where particles are assigned a vector pointing in one of $q$ directions, and each particle can compute the angle between its direction and the direction of any neighboring particle, although without knowledge of global orientation with respect to a fixed underlying coordinate system. Particles move stochastically, with each particle able to either modify its direction or make a local spatial move along a lattice edge during a move. We consider two settings: (a) where particle configurations must remain simply connected at all times and (b) where spatial moves are unconstrained and configurations can disconnect. Taking inspiration from the Potts and clock models from statistical physics, we prove that for any $q \geq 2,$ these self-organizing particle systems can be made to collectively align along a single dominant direction (analogous to a solid or ordered state) or remain non-aligned, in which case the fraction of particles oriented along any direction is nearly equal (analogous to a gaseous or disordered state). Moreover, we show that with appropriate settings of the input parameters, we can achieve \emph{compression} and \emph{expansion}, controlling how tightly gathered the particles are, as well as \emph{alignment} or \emph{nonalignment}, producing a single dominant orientation or not.

Citations (4)

Summary

We haven't generated a summary for this paper yet.