Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the use of graph neural networks and shape-function-based gradient computation in the deep energy method (2207.07216v1)

Published 14 Jul 2022 in cs.CE

Abstract: A graph neural network (GCN) is employed in the deep energy method (DEM) model to solve the momentum balance equation in 3D for the deformation of linear elastic and hyperelastic materials due to its ability to handle irregular domains over the traditional DEM method based on a multilayer perceptron (MLP) network. Its accuracy and solution time are compared to the DEM model based on a MLP network. We demonstrate that the GCN-based model delivers similar accuracy while having a shorter run time through numerical examples. Two different spatial gradient computation techniques, one based on automatic differentiation (AD) and the other based on shape function (SF) gradients, are also accessed. We provide a simple example to demonstrate the strain localization instability associated with the AD-based gradient computation and show that the instability exists in more general cases by four numerical examples. The SF-based gradient computation is shown to be more robust and delivers an accurate solution even at severe deformations. Therefore, the combination of the GCN-based DEM model and SF-based gradient computation is potentially a promising candidate for solving problems involving severe material and geometric nonlinearities.

Citations (24)

Summary

We haven't generated a summary for this paper yet.