Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning port-Hamiltonian systems -- algorithms (2207.07124v1)

Published 14 Jul 2022 in cs.CE

Abstract: In this article we study the possibilities of recovering the structure of port-Hamiltonian systems starting from ``unlabelled'' ordinary differential equations describing mechanical systems. The algorithm we suggest solves the problem in two phases. It starts by constructing the connectivity structure of the system using machine learning methods -- producing thus a graph of interconnected subsystems. Then this graph is enhanced by recovering the Hamiltonian structure of each subsystem as well as the corresponding ports. This second phase relies heavily on results from symplectic and Poisson geometry that we briefly sketch. And the precise solutions can be constructed using methods of computer algebra and symbolic computations. The algorithm permits to extend the port-Hamiltonian formalism to generic ordinary differential equations, hence introducing eventually a new concept of normal forms of ODEs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.