Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating sparse direct effects in multivariate regression with the spike-and-slab LASSO (2207.07020v3)

Published 14 Jul 2022 in stat.ME

Abstract: The multivariate regression interpretation of the Gaussian chain graph model simultaneously parametrizes (i) the direct effects of $p$ predictors on $q$ outcomes and (ii) the residual partial covariances between pairs of outcomes. We introduce a new method for fitting sparse Gaussian chain graph models with spike-and-slab LASSO (SSL) priors. We develop an Expectation Conditional Maximization algorithm to obtain sparse estimates of the $p \times q$ matrix of direct effects and the $q \times q$ residual precision matrix. Our algorithm iteratively solves a sequence of penalized maximum likelihood problems with self-adaptive penalties that gradually filter out negligible regression coefficients and partial covariances. Because it adaptively penalizes individual model parameters, our method is seen to outperform fixed-penalty competitors on simulated data. We establish the posterior contraction rate for our model, buttressing our method's excellent empirical performance with strong theoretical guarantees. Using our method, we estimated the direct effects of diet and residence type on the composition of the gut microbiome of elderly adults.

Summary

We haven't generated a summary for this paper yet.