Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Examples for Model-Based Control: A Sensitivity Analysis (2207.06982v1)

Published 14 Jul 2022 in eess.SY and cs.SY

Abstract: We propose a method to attack controllers that rely on external timeseries forecasts as task parameters. An adversary can manipulate the costs, states, and actions of the controllers by forging the timeseries, in this case perturbing the real timeseries. Since the controllers often encode safety requirements or energy limits in their costs and constraints, we refer to such manipulation as an adversarial attack. We show that different attacks on model-based controllers can increase control costs, activate constraints, or even make the control optimization problem infeasible. We use the linear quadratic regulator and convex model predictive controllers as examples of how adversarial attacks succeed and demonstrate the impact of adversarial attacks on a battery storage control task for power grid operators. As a result, our method increases control cost by $8500\%$ and energy constraints by $13\%$ on real electricity demand timeseries.

Citations (4)

Summary

We haven't generated a summary for this paper yet.