Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double-Loop Importance Sampling for McKean--Vlasov Stochastic Differential Equation (2207.06926v5)

Published 14 Jul 2022 in math.NA, cs.NA, and stat.CO

Abstract: This paper investigates Monte Carlo (MC) methods to estimate probabilities of rare events associated with solutions to the $d$-dimensional McKean-Vlasov stochastic differential equation (MV-SDE). MV-SDEs are usually approximated using a stochastic interacting $P$-particle system, which is a set of $P$ coupled $d$-dimensional stochastic differential equations (SDEs). Importance sampling (IS) is a common technique for reducing high relative variance of MC estimators of rare-event probabilities. We first derive a zero-variance IS change of measure for the quantity of interest by using stochastic optimal control theory. However, when this change of measure is applied to stochastic particle systems, it yields a $P \times d$-dimensional partial differential control equation (PDE), which is computationally expensive to solve. To address this issue, we use the decoupling approach introduced in [dos Reis et al., 2023], generating a $d$-dimensional control PDE for a zero-variance estimator of the decoupled SDE. Based on this approach, we develop a computationally efficient double loop MC (DLMC) estimator. We conduct a comprehensive numerical error and work analysis of the DLMC estimator. As a result, we show optimal complexity of $\mathcal{O}(\mathrm{TOL}{\mathrm{r}}{-4})$ with a significantly reduced constant to achieve a prescribed relative error tolerance $\mathrm{TOL}{\mathrm{r}}$. Subsequently, we propose an adaptive DLMC method combined with IS to numerically estimate rare-event probabilities, substantially reducing relative variance and computational runtimes required to achieve a given $\mathrm{TOL}_{\mathrm{r}}$ compared with standard MC estimators in the absence of IS. Numerical experiments are performed on the Kuramoto model from statistical physics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.