Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic trust-region algorithm in random subspaces with convergence and expected complexity analyses (2207.06452v1)

Published 13 Jul 2022 in math.OC and math.PR

Abstract: This work proposes a framework for large-scale stochastic derivative-free optimization (DFO) by introducing STARS, a trust-region method based on iterative minimization in random subspaces. This framework is both an algorithmic and theoretical extension of an algorithm for stochastic optimization with random models (STORM). Moreover, STARS achieves scalability by minimizing interpolation models that approximate the objective in low-dimensional affine subspaces, thus significantly reducing per-iteration costs in terms of function evaluations and yielding strong performance on large-scale stochastic DFO problems. The user-determined dimension of these subspaces, when the latter are defined, for example, by the columns of so-called Johnson--Lindenstrauss transforms, turns out to be independent of the dimension of the problem. For convergence purposes, both a particular quality of the subspace and the accuracies of random function estimates and models are required to hold with sufficiently high, but fixed, probabilities. Using martingale theory under the latter assumptions, an almost sure global convergence of STARS to a first-order stationary point is shown, and the expected number of iterations required to reach a desired first-order accuracy is proved to be similar to that of STORM and other stochastic DFO algorithms, up to constants.

Citations (11)

Summary

We haven't generated a summary for this paper yet.