Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

URANUS: Radio Frequency Tracking, Classification and Identification of Unmanned Aircraft Vehicles (2207.06025v3)

Published 13 Jul 2022 in cs.LG

Abstract: Safety and security issues for Critical Infrastructures are growing as attackers adopt drones as an attack vector flying in sensitive airspaces, such as airports, military bases, city centers, and crowded places. Despite the use of UAVs for logistics, shipping recreation activities, and commercial applications, their usage poses severe concerns to operators due to the violations and the invasions of the restricted airspaces. A cost-effective and real-time framework is needed to detect the presence of drones in such cases. In this contribution, we propose an efficient radio frequency-based detection framework called URANUS. We leverage real-time data provided by the Radio Frequency/Direction Finding system, and radars in order to detect, classify and identify drones (multi-copter and fixed-wings) invading no-drone zones. We adopt a Multilayer Perceptron neural network to identify and classify UAVs in real-time, with $90$% accuracy. For the tracking task, we use a Random Forest model to predict the position of a drone with an MSE $\approx0.29$, MAE $\approx0.04$, and $R2\approx 0.93$. Furthermore, coordinate regression is performed using Universal Transverse Mercator coordinates to ensure high accuracy. Our analysis shows that URANUS is an ideal framework for identifying, classifying, and tracking UAVs that most Critical Infrastructure operators can adopt.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Domenico Lofù (3 papers)
  2. Pietro Di Gennaro (2 papers)
  3. Pietro Tedeschi (9 papers)
  4. Tommaso Di Noia (59 papers)
  5. Eugenio Di Sciascio (22 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.