Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional law of large numbers and central limit theorem for slow-fast McKean-Vlasov equations (2207.05949v1)

Published 13 Jul 2022 in math.PR

Abstract: In this paper, we study the asymptotic behavior of a fully-coupled slow-fast McKean-Vlasov stochastic system. Using the non-linear Poisson equation on Wasserstein space, we first establish the strong convergence in the averaging principle of the functional law of large numbers type. In particular, the diffusion coefficient of the slow process can depend on the distribution of the fast motion. Then we consider the stochastic fluctuations of the original system around its average, and prove that the normalized difference will converge weakly to a linear McKean-Vlasov Ornstein-Uhlenbeck type process, which can be viewed as a functional central limit theorem. Extra drift and diffusion coefficients involving the expectation are characterized explicitly. Furthermore, the optimal rates of the convergence are also obtained.

Summary

We haven't generated a summary for this paper yet.