Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Texture-guided Saliency Distilling for Unsupervised Salient Object Detection (2207.05921v3)

Published 13 Jul 2022 in cs.CV

Abstract: Deep Learning-based Unsupervised Salient Object Detection (USOD) mainly relies on the noisy saliency pseudo labels that have been generated from traditional handcraft methods or pre-trained networks. To cope with the noisy labels problem, a class of methods focus on only easy samples with reliable labels but ignore valuable knowledge in hard samples. In this paper, we propose a novel USOD method to mine rich and accurate saliency knowledge from both easy and hard samples. First, we propose a Confidence-aware Saliency Distilling (CSD) strategy that scores samples conditioned on samples' confidences, which guides the model to distill saliency knowledge from easy samples to hard samples progressively. Second, we propose a Boundary-aware Texture Matching (BTM) strategy to refine the boundaries of noisy labels by matching the textures around the predicted boundary. Extensive experiments on RGB, RGB-D, RGB-T, and video SOD benchmarks prove that our method achieves state-of-the-art USOD performance.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com