Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust finite element discretization and solvers for distributed elliptic optimal control problems (2207.04664v1)

Published 11 Jul 2022 in math.NA, cs.NA, and math.OC

Abstract: We consider standard tracking-type, distributed elliptic optimal control problems with $L2$ regularization, and their finite element discretization. We are investigating the $L2$ error between the finite element approximation $u_{\varrho h}$ of the state $u_\varrho$ and the desired state (target) $\bar{u}$ in terms of the regularization parameter $\varrho$ and the mesh size $h$ that leads to the optimal choice $\varrho = h4$. It turns out that, for this choice of the regularization parameter, we can devise simple Jacobi-like preconditioned MINRES or Bramble-Pasciak CG methods that allow us to solve the reduced discrete optimality system in asymptotically optimal complexity with respect to the arithmetical operations and memory demand. The theoretical results are confirmed by several benchmark problems with targets of various regularities including discontinuous targets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.