Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Determinant Maximization via Matroid Intersection Algorithms (2207.04318v1)

Published 9 Jul 2022 in cs.DS

Abstract: Determinant maximization problem gives a general framework that models problems arising in as diverse fields as statistics \cite{pukelsheim2006optimal}, convex geometry \cite{Khachiyan1996}, fair allocations\linebreak \cite{anari2016nash}, combinatorics \cite{AnariGV18}, spectral graph theory \cite{nikolov2019proportional}, network design, and random processes \cite{kulesza2012determinantal}. In an instance of a determinant maximization problem, we are given a collection of vectors $U={v_1,\ldots, v_n} \subset \RRd$, and a goal is to pick a subset $S\subseteq U$ of given vectors to maximize the determinant of the matrix $\sum_{i\in S} v_i v_i\top $. Often, the set $S$ of picked vectors must satisfy additional combinatorial constraints such as cardinality constraint $\left(|S|\leq k\right)$ or matroid constraint ($S$ is a basis of a matroid defined on the vectors). In this paper, we give a polynomial-time deterministic algorithm that returns a $r{O(r)}$-approximation for any matroid of rank $r\leq d$. This improves previous results that give $e{O(r2)}$-approximation algorithms relying on $e{O(r)}$-approximate \emph{estimation} algorithms \cite{NikolovS16,anari2017generalization,AnariGV18,madan2020maximizing} for any $r\leq d$. All previous results use convex relaxations and their relationship to stable polynomials and strongly log-concave polynomials. In contrast, our algorithm builds on combinatorial algorithms for matroid intersection, which iteratively improve any solution by finding an \emph{alternating negative cycle} in the \emph{exchange graph} defined by the matroids. While the $\det(.)$ function is not linear, we show that taking appropriate linear approximations at each iteration suffice to give the improved approximation algorithm.

Citations (4)

Summary

We haven't generated a summary for this paper yet.