Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary Iterative Hard Thresholding Converges with Optimal Number of Measurements for 1-Bit Compressed Sensing (2207.03427v1)

Published 7 Jul 2022 in cs.IT, cs.DS, eess.SP, math.IT, and stat.ML

Abstract: Compressed sensing has been a very successful high-dimensional signal acquisition and recovery technique that relies on linear operations. However, the actual measurements of signals have to be quantized before storing or processing. 1(One)-bit compressed sensing is a heavily quantized version of compressed sensing, where each linear measurement of a signal is reduced to just one bit: the sign of the measurement. Once enough of such measurements are collected, the recovery problem in 1-bit compressed sensing aims to find the original signal with as much accuracy as possible. The recovery problem is related to the traditional "halfspace-learning" problem in learning theory. For recovery of sparse vectors, a popular reconstruction method from 1-bit measurements is the binary iterative hard thresholding (BIHT) algorithm. The algorithm is a simple projected sub-gradient descent method, and is known to converge well empirically, despite the nonconvexity of the problem. The convergence property of BIHT was not theoretically justified, except with an exorbitantly large number of measurements (i.e., a number of measurement greater than $\max{k{10}, 24{48}, k{3.5}/\epsilon}$, where $k$ is the sparsity, $\epsilon$ denotes the approximation error, and even this expression hides other factors). In this paper we show that the BIHT algorithm converges with only $\tilde{O}(\frac{k}{\epsilon})$ measurements. Note that, this dependence on $k$ and $\epsilon$ is optimal for any recovery method in 1-bit compressed sensing. With this result, to the best of our knowledge, BIHT is the only practical and efficient (polynomial time) algorithm that requires the optimal number of measurements in all parameters (both $k$ and $\epsilon$). This is also an example of a gradient descent algorithm converging to the correct solution for a nonconvex problem, under suitable structural conditions.

Citations (7)

Summary

We haven't generated a summary for this paper yet.