Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DLME: Deep Local-flatness Manifold Embedding (2207.03160v2)

Published 7 Jul 2022 in cs.LG

Abstract: Manifold learning (ML) aims to seek low-dimensional embedding from high-dimensional data. The problem is challenging on real-world datasets, especially with under-sampling data, and we find that previous methods perform poorly in this case. Generally, ML methods first transform input data into a low-dimensional embedding space to maintain the data's geometric structure and subsequently perform downstream tasks therein. The poor local connectivity of under-sampling data in the former step and inappropriate optimization objectives in the latter step leads to two problems: structural distortion and underconstrained embedding. This paper proposes a novel ML framework named Deep Local-flatness Manifold Embedding (DLME) to solve these problems. The proposed DLME constructs semantic manifolds by data augmentation and overcomes the structural distortion problem using a smoothness constrained based on a local flatness assumption about the manifold. To overcome the underconstrained embedding problem, we design a loss and theoretically demonstrate that it leads to a more suitable embedding based on the local flatness. Experiments on three types of datasets (toy, biological, and image) for various downstream tasks (classification, clustering, and visualization) show that our proposed DLME outperforms state-of-the-art ML and contrastive learning methods.

Citations (21)

Summary

We haven't generated a summary for this paper yet.