Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shadow-Background-Noise 3D Spatial Decomposition Using Sparse Low-Rank Gaussian Properties for Video-SAR Moving Target Shadow Enhancement (2207.03064v2)

Published 7 Jul 2022 in cs.CV

Abstract: Moving target shadows among video synthetic aperture radar (Video-SAR) images are always interfered by low scattering backgrounds and cluttered noises, causing poor detec-tion-tracking accuracy. Thus, a shadow-background-noise 3D spatial decomposition (SBN-3D-SD) model is proposed to enhance shadows for higher detection-tracking accuracy. It leverages the sparse property of shadows, the low-rank property of back-grounds, and the Gaussian property of noises to perform 3D spatial three-decomposition. It separates shadows from back-grounds and noises by the alternating direction method of multi-pliers (ADMM). Results on the Sandia National Laboratories (SNL) data verify its effectiveness. It boosts the shadow saliency from the qualitative and quantitative evaluation. It boosts the shadow detection accuracy of Faster R-CNN, RetinaNet and YOLOv3. It also boosts the shadow tracking accuracy of TransTrack, FairMOT and ByteTrack.

Citations (19)

Summary

We haven't generated a summary for this paper yet.