Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Team Learning as a Lens for Designing Human-AI Co-Creative Systems (2207.02996v1)

Published 6 Jul 2022 in cs.HC and cs.AI

Abstract: Generative, ML-driven interactive systems have the potential to change how people interact with computers in creative processes - turning tools into co-creators. However, it is still unclear how we might achieve effective human-AI collaboration in open-ended task domains. There are several known challenges around communication in the interaction with ML-driven systems. An overlooked aspect in the design of co-creative systems is how users can be better supported in learning to collaborate with such systems. Here we reframe human-AI collaboration as a learning problem: Inspired by research on team learning, we hypothesize that similar learning strategies that apply to human-human teams might also increase the collaboration effectiveness and quality of humans working with co-creative generative systems. In this position paper, we aim to promote team learning as a lens for designing more effective co-creative human-AI collaboration and emphasize collaboration process quality as a goal for co-creative systems. Furthermore, we outline a preliminary schematic framework for embedding team learning support in co-creative AI systems. We conclude by proposing a research agenda and posing open questions for further study on supporting people in learning to collaborate with generative AI systems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.