Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

First-Order Electroweak Phase Transition and Baryogenesis from a Naturally Light Singlet Scalar (2207.02867v2)

Published 6 Jul 2022 in hep-ph and astro-ph.CO

Abstract: We investigate a minimal singlet-scalar extension to the Standard Model that achieves a strong first-order electroweak phase transition. The singlet can be naturally light because of an approximate shift symmetry and no extra hierarchy problem beyond that of the Standard Model Higgs is introduced. We discuss the two-field dynamics of the phase transition in detail and find that the gravitational-wave signal is too weak to be detected by near-future observations. We also discuss the meta-stability of the zero-temperature scalar potential. Despite the apparent instability just above the electroweak scale, we show that the lifetime of the electroweak vacuum is much longer than the age of the universe and hence the setup does not require UV completion near the electroweak scale. The baryon asymmetry of the universe may be explained by local electroweak baryogenesis arising from a coupling between the singlet and weak gauge boson. The predicted electron electric dipole moment is much below the current bound. The viable parameter space can be probed by the observations of rare Kaon decay and the cosmic microwave background.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe,” Phys. Lett. B 155 (1985) 36.
  2. N. S. Manton, “Topology in the Weinberg-Salam Theory,” Phys. Rev. D 28 (1983) 2019.
  3. F. R. Klinkhamer and N. S. Manton, “A Saddle Point Solution in the Weinberg-Salam Theory,” Phys. Rev. D 30 (1984) 2212.
  4. A. D. Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,” Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35.
  5. K. Jansen, “Status of the Finite Temperature Electroweak Phase Transition on the Lattice,” Nuclear Physics B - Proceedings Supplements 47 (1996) 196–211, arXiv:hep-lat/9509018.
  6. K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “The Electroweak phase transition: A Nonperturbative analysis,” Nucl. Phys. B 466 (1996) 189–258, arXiv:hep-lat/9510020.
  7. K. Rummukainen, “Finite T Electroweak Phase Transition on the Lattice,” Nuclear Physics B - Proceedings Supplements 53 (1997) 30–42, arXiv:hep-lat/9608079.
  8. K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “Is there a  hot electroweak phase transition at mH≳mWgreater-than-or-equivalent-tosubscript𝑚𝐻subscript𝑚𝑊m_{H}\gtrsim m_{W}italic_m start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ≳ italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT?,” Phys. Rev. Lett. 77 (1996) 2887–2890, arXiv:hep-ph/9605288.
  9. M. Gurtler, E.-M. Ilgenfritz, and A. Schiller, “Where the electroweak phase transition ends,” Phys. Rev. D 56 (1997) 3888–3895, arXiv:hep-lat/9704013.
  10. F. Csikor, Z. Fodor, and J. Heitger, “Endpoint of the hot electroweak phase transition,” Phys. Rev. Lett. 82 (1999) 21–24, arXiv:hep-ph/9809291.
  11. M. Laine and K. Rummukainen, “A Strong electroweak phase transition up to m(H) is about 105-GeV,” Phys. Rev. Lett. 80 (1998) 5259–5262, arXiv:hep-ph/9804255.
  12. M. Laine and K. Rummukainen, “The MSSM Electroweak Phase Transition on the Lattice,” Nuclear Physics B 535 (1998) 423–457, arXiv:hep-lat/9804019.
  13. K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, and M. E. Shaposhnikov, “The Universality class of the electroweak theory,” Nucl. Phys. B 532 (1998) 283–314, arXiv:hep-lat/9805013.
  14. Z. Fodor, “Electroweak Phase Transitions,” Nuclear Physics B - Proceedings Supplements 83–84 (2000) 121–125, arXiv:hep-lat/9909162.
  15. P. Huet and E. Sather, “Electroweak Baryogenesis and Standard Model CP Violation,” Physical Review D 51 (1995) 379–394, arXiv:hep-ph/9404302.
  16. M. B. Gavela, P. Hernández, J. Orloff, and O. Pène, “Standard Model CP-violation and Baryon asymmetry,” Modern Physics Letters A 09 (1994) 795–809, arXiv:hep-ph/9312215.
  17. M. B. Gavela, M. Lozano, J. Orloff, and O. Pène, “Standard Model CP-violation and Baryon asymmetry Part I: Zero Temperature,” Nuclear Physics B 430 (1994) 345–381, arXiv:hep-ph/9406288.
  18. M. B. Gavela, P. Hernandez, J. Orloff, O. Pène, and C. Quimbay, “Standard Model CP-violation and Baryon asymmetry Part II: Finite Temperature,” Nuclear Physics B 430 (1994) 382–426, arXiv:hep-ph/9406289.
  19. M. B. Gavela, P. Hernández, J. Orloff, and O. Pène, “Standard Model Baryogenesis,” arXiv:hep-ph/9407403 (1994) , arXiv:hep-ph/9407403.
  20. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “Progress in electroweak baryogenesis,” Ann. Rev. Nucl. Part. Sci. 43 (1993) 27–70, arXiv:hep-ph/9302210.
  21. M. Dine and A. Kusenko, “The Origin of the matter - antimatter asymmetry,” Rev. Mod. Phys. 76 (2003) 1, arXiv:hep-ph/0303065.
  22. J. M. Cline, “Baryogenesis,” in Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime. 9, 2006. arXiv:hep-ph/0609145.
  23. D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” New J. Phys. 14 (2012) 125003, arXiv:1206.2942 [hep-ph].
  24. 3, 2022. arXiv:2203.05010 [hep-ph].
  25. M. Quiros, “Finite temperature field theory and phase transitions,” in ICTP Summer School in High-Energy Physics and Cosmology, pp. 187–259. 1, 1999. arXiv:hep-ph/9901312.
  26. M. Postma and G. White, “Cosmological phase transitions: is effective field theory just a toy?,” JHEP 03 (2021) 280, arXiv:2012.03953 [hep-ph].
  27. D. Croon, O. Gould, P. Schicho, T. V. I. Tenkanen, and G. White, “Theoretical uncertainties for cosmological first-order phase transitions,” Journal of High Energy Physics 2021 (2021) 55, arXiv:2009.10080.
  28. M. Pietroni, “The Electroweak phase transition in a nonminimal supersymmetric model,” Nucl. Phys. B 402 (1993) 27–45, arXiv:hep-ph/9207227.
  29. J. Choi and R. R. Volkas, “Real Higgs singlet and the electroweak phase transition in the Standard Model,” Phys. Lett. B317 (1993) 385–391, arXiv:hep-ph/9308234 [hep-ph].
  30. S. W. Ham, Y. S. Jeong, and S. K. Oh, “Electroweak phase transition in an extension of the standard model with a real Higgs singlet,” J. Phys. G31 (2005) no. 8, 857–871, arXiv:hep-ph/0411352 [hep-ph].
  31. A. Noble and M. Perelstein, “Higgs self-coupling as a probe of electroweak phase transition,” Phys. Rev. D78 (2008) 063518, arXiv:0711.3018 [hep-ph].
  32. A. Ahriche, “What is the criterion for a strong first order electroweak phase transition in singlet models?,” Phys. Rev. D75 (2007) 083522, arXiv:hep-ph/0701192 [hep-ph].
  33. S. Profumo, M. J. Ramsey-Musolf, and G. Shaughnessy, “Singlet Higgs phenomenology and the electroweak phase transition,” JHEP 08 (2007) 010, arXiv:0705.2425 [hep-ph].
  34. V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf, and G. Shaughnessy, “LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet,” Phys. Rev. D 77 (2008) 035005, arXiv:0706.4311 [hep-ph].
  35. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, and G. Shaughnessy, “Complex singlet extension of the standard model,” 0811.0393v2.
  36. S. Das, P. J. Fox, A. Kumar, and N. Weiner, “The Dark Side of the Electroweak Phase Transition,” JHEP 11 (2010) 108, arXiv:0910.1262 [hep-ph].
  37. A. Ashoorioon and T. Konstandin, “Strong electroweak phase transitions without collider traces,” JHEP 07 (2009) 086, arXiv:0904.0353 [hep-ph].
  38. V. Barger, D. J. H. Chung, A. J. Long, and L.-T. Wang, “Strongly First Order Phase Transitions Near an Enhanced Discrete Symmetry Point,” Phys. Lett. B 710 (2012) 1–7, arXiv:1112.5460 [hep-ph].
  39. J. R. Espinosa, T. Konstandin, and F. Riva, “Strong Electroweak Phase Transitions in the Standard Model with a Singlet,” Nucl. Phys. B 854 (2012) 592–630, arXiv:1107.5441 [hep-ph].
  40. D. J. H. Chung, A. J. Long, and L.-T. Wang, “125 GeV Higgs boson and electroweak phase transition model classes,” Phys. Rev. D 87 (2013) no. 2, 023509, arXiv:1209.1819 [hep-ph].
  41. S. Profumo, M. J. Ramsey-Musolf, C. L. Wainwright, and P. Winslow, “Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies,” Phys. Rev. D91 (2015) no. 3, 035018, arXiv:1407.5342 [hep-ph].
  42. A. V. Kotwal, M. J. Ramsey-Musolf, J. M. No, and P. Winslow, “Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier,” Phys. Rev. D94 (2016) no. 3, 035022, arXiv:1605.06123 [hep-ph].
  43. T. Tenkanen, K. Tuominen, and V. Vaskonen, “A Strong Electroweak Phase Transition from the Inflaton Field,” JCAP 1609 (2016) no. 09, 037, arXiv:1606.06063 [hep-ph].
  44. C.-Y. Chen, J. Kozaczuk, and I. M. Lewis, “Non-resonant Collider Signatures of a Singlet-Driven Electroweak Phase Transition,” JHEP 08 (2017) 096, arXiv:1704.05844 [hep-ph].
  45. M. Carena, Z. Liu, and Y. Wang, “Electroweak phase transition with spontaneous Z2-breaking,” Journal of High Energy Physics 2020 (2020) 107, arXiv:1911.10206.
  46. A. Friedlander, I. Banta, J. M. Cline, and D. Tucker-Smith, “Wall speed and shape in singlet-assisted strong electroweak phase transitions,” Phys. Rev. D 103 (2021) no. 5, 055020, arXiv:2009.14295 [hep-ph].
  47. G. W. Anderson and L. J. Hall, “The Electroweak phase transition and baryogenesis,” Phys. Rev. D 45 (1992) 2685–2698.
  48. J. R. Espinosa and M. Quiros, “The Electroweak phase transition with a singlet,” Phys. Lett. B 305 (1993) 98–105, arXiv:hep-ph/9301285.
  49. J. McDonald, “Electroweak baryogenesis and dark matter via a gauge singlet scalar,” Phys. Lett. B 323 (1994) 339–346.
  50. J. R. Espinosa, B. Gripaios, T. Konstandin, and F. Riva, “Electroweak Baryogenesis in Non-minimal Composite Higgs Models,” JCAP 01 (2012) 012, arXiv:1110.2876 [hep-ph].
  51. J. M. Cline and K. Kainulainen, “Electroweak baryogenesis and dark matter from a singlet Higgs,” JCAP 01 (2013) 012, arXiv:1210.4196 [hep-ph].
  52. C. Cheung and Y. Zhang, “Electroweak Cogenesis,” JHEP 09 (2013) 002, arXiv:1306.4321 [hep-ph].
  53. M. Jiang, L. Bian, W. Huang, and J. Shu, “Impact of a complex singlet: Electroweak baryogenesis and dark matter,” Phys. Rev. D 93 (2016) no. 6, 065032, arXiv:1502.07574 [hep-ph].
  54. V. Vaskonen, “Electroweak baryogenesis and gravitational waves from a real scalar singlet,” Phys. Rev. D 95 (2017) no. 12, 123515, arXiv:1611.02073 [hep-ph].
  55. J. M. Cline, K. Kainulainen, and D. Tucker-Smith, “Electroweak baryogenesis from a dark sector,” Phys. Rev. D 95 (2017) no. 11, 115006, arXiv:1702.08909 [hep-ph].
  56. B. Grzadkowski and D. Huang, “Spontaneous C⁢P𝐶𝑃CPitalic_C italic_P-Violating Electroweak Baryogenesis and Dark Matter from a Complex Singlet Scalar,” JHEP 08 (2018) 135, arXiv:1807.06987 [hep-ph].
  57. M. Carena, M. Quirós, and Y. Zhang, “Dark CP violation and gauged lepton or baryon number for electroweak baryogenesis,” Physical Review D 101 (2020) 055014.
  58. W. Chao and Y. Liu, “CP violation in the top-assisted electroweak baryogenesis,” arXiv:1910.09303 [hep-ph].
  59. K.-P. Xie, L. Bian, and Y. Wu, “Electroweak baryogenesis and gravitational waves in a composite Higgs model with high dimensional fermion representations,” JHEP 12 (2020) 047, arXiv:2005.13552 [hep-ph].
  60. J. M. Cline, A. Friedlander, D.-M. He, K. Kainulainen, B. Laurent, and D. Tucker-Smith, “Baryogenesis and gravity waves from a UV-completed electroweak phase transition,” Phys. Rev. D 103 (2021) no. 12, 123529, arXiv:2102.12490 [hep-ph].
  61. B. Gripaios, A. Pomarol, F. Riva, and J. Serra, “Beyond the Minimal Composite Higgs Model,” JHEP 04 (2009) 070, arXiv:0902.1483 [hep-ph].
  62. M. Dine, P. Huet, R. L. Singleton, Jr, and L. Susskind, “Creating the baryon asymmetry at the electroweak phase transition,” Phys. Lett. B 257 (1991) 351–356.
  63. M. Dine, R. G. Leigh, P. Y. Huet, A. D. Linde, and D. A. Linde, “Towards the theory of the electroweak phase transition,” Phys. Rev. D 46 (1992) 550–571, arXiv:hep-ph/9203203.
  64. P. M. Schicho, T. V. I. Tenkanen, and J. Österman, “Robust approach to thermal resummation: Standard Model meets a singlet,” JHEP 06 (2021) 130, arXiv:2102.11145 [hep-ph].
  65. P. Schicho, T. V. I. Tenkanen, and G. White, “Combining thermal resummation and gauge invariance for electroweak phase transition,” arXiv:2203.04284 [hep-ph].
  66. L. Niemi, P. Schicho, and T. V. I. Tenkanen, “Singlet-assisted electroweak phase transition at two loops,” Phys. Rev. D 103 (2021) no. 11, 115035, arXiv:2103.07467 [hep-ph].
  67. C. L. Wainwright, “CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields,” Comput. Phys. Commun. 183 (2012) 2006–2013, arXiv:1109.4189 [hep-ph].
  68. H. Kudoh, A. Taruya, T. Hiramatsu, and Y. Himemoto, “Detecting a gravitational-wave background with next-generation space interferometers,” Phys. Rev. D 73 (2006) 064006, arXiv:gr-qc/0511145.
  69. S. Kuroyanagi, S. Tsujikawa, T. Chiba, and N. Sugiyama, “Implications of the B-mode Polarization Measurement for Direct Detection of Inflationary Gravitational Waves,” Phys. Rev. D 90 (2014) no. 6, 063513, arXiv:1406.1369 [astro-ph.CO].
  70. S. J. Huber and T. Konstandin, “Gravitational Wave Production by Collisions: More Bubbles,” JCAP 09 (2008) 022, arXiv:0806.1828 [hep-ph].
  71. G. D. Moore, “Measuring the broken phase sphaleron rate nonperturbatively,” Phys. Rev. D 59 (1999) 014503, arXiv:hep-ph/9805264.
  72. M. D’Onofrio, K. Rummukainen, and A. Tranberg, “Sphaleron Rate in the Minimal Standard Model,” Phys. Rev. Lett. 113 (2014) no. 14, 141602, arXiv:1404.3565 [hep-ph].
  73. S. Baum, M. Carena, N. R. Shah, C. E. M. Wagner, and Y. Wang, “Nucleation is more than critical: A case study of the electroweak phase transition in the NMSSM,” JHEP 03 (2021) 055, arXiv:2009.10743 [hep-ph].
  74. H. Leutwyler and M. A. Shifman, “Light Higgs Particle in Decays of K𝐾Kitalic_K and η𝜂\etaitalic_η Mesons,” Nucl. Phys. B 343 (1990) 369–397.
  75. M. Ibe, S. Kobayashi, Y. Nakayama, and S. Shirai, “Cosmological constraints on dark scalar,” JHEP 03 (2022) 198, arXiv:2112.11096 [hep-ph].
  76. N. Ishizuka and M. Yoshimura, “Axion and Dilaton Emissivity From Nascent Neutron Stars,” Prog. Theor. Phys. 84 (1990) 233–250.
  77. S. Balaji, P. S. B. Dev, J. Silk, and Y. Zhang, “Improved stellar limits on a light CP-even scalar,” arXiv:2205.01669 [hep-ph].
  78. V. Agrawal, S. M. Barr, J. F. Donoghue, and D. Seckel, “Viable range of the mass scale of the standard model,” Phys. Rev. D 57 (1998) 5480–5492, arXiv:hep-ph/9707380.
  79. L. J. Hall, D. Pinner, and J. T. Ruderman, “The Weak Scale from BBN,” JHEP 12 (2014) 134, arXiv:1409.0551 [hep-ph].
  80. G. D’Amico, A. Strumia, A. Urbano, and W. Xue, “Direct anthropic bound on the weak scale from supernovæ explosions,” Phys. Rev. D 100 (2019) no. 8, 083013, arXiv:1906.00986 [astro-ph.HE].
  81. D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, and A. Strumia, “Investigating the near-criticality of the Higgs boson,” JHEP 12 (2013) 089, arXiv:1307.3536 [hep-ph].
  82. S. R. Coleman, “The Fate of the False Vacuum. 1. Semiclassical Theory,” Phys. Rev. D 15 (1977) 2929–2936. [Erratum: Phys.Rev.D 16, 1248 (1977)].
  83. R. Sato, “SimpleBounce : a simple package for the false vacuum decay,” Comput. Phys. Commun. 258 (2021) 107566, arXiv:1908.10868 [hep-ph].
  84. S. Fubini, “A New Approach to Conformal Invariant Field Theories,” Nuovo Cim. A 34 (1976) 521.
  85. L. N. Lipatov, “Divergence of the Perturbation Theory Series and the Quasiclassical Theory,” Sov. Phys. JETP 45 (1977) 216–223.
  86. J. R. Espinosa, “Tunneling without Bounce,” Phys. Rev. D 100 (2019) no. 10, 105002, arXiv:1908.01730 [hep-th].
Citations (7)

Summary

We haven't generated a summary for this paper yet.