Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gender Biases and Where to Find Them: Exploring Gender Bias in Pre-Trained Transformer-based Language Models Using Movement Pruning (2207.02463v1)

Published 6 Jul 2022 in cs.CL

Abstract: LLM debiasing has emerged as an important field of study in the NLP community. Numerous debiasing techniques were proposed, but bias ablation remains an unaddressed issue. We demonstrate a novel framework for inspecting bias in pre-trained transformer-based LLMs via movement pruning. Given a model and a debiasing objective, our framework finds a subset of the model containing less bias than the original model. We implement our framework by pruning the model while fine-tuning it on the debiasing objective. Optimized are only the pruning scores - parameters coupled with the model's weights that act as gates. We experiment with pruning attention heads, an important building block of transformers: we prune square blocks, as well as establish a new way of pruning the entire heads. Lastly, we demonstrate the usage of our framework using gender bias, and based on our findings, we propose an improvement to an existing debiasing method. Additionally, we re-discover a bias-performance trade-off: the better the model performs, the more bias it contains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Przemyslaw Joniak (3 papers)
  2. Akiko Aizawa (74 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.