Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Steering Torque Behaviour Modelling with Hidden Markov Models (2207.01995v1)

Published 5 Jul 2022 in cs.HC

Abstract: Modern Advanced Driver Assistance Systems (ADAS) are limited in their ability to consider the drivers intention, resulting in unnatural guidance and low customer acceptance. In this research, we focus on a novel data-driven approach to predict driver steering torque. In particular, driver behavior is modeled by learning the parameters of a Hidden Markov Model (HMM) and estimation is performed with Gaussian Mixture Regression (GMR). An extensive parameter selection framework enables us to objectively select the model hyper-parameters and prevents overfitting. The final model behavior is optimized with a cost function balancing between accuracy and smoothness. Naturalistic driving data covering seven participants is obtained using a static driving simulator at Toyota Motor Europe for the training, evaluation, and testing of the proposed model. The results demonstrate that our approach achieved a 92% steering torque accuracy with a 37% increase in signal smoothness and 90% fewer data compared to a baseline. In addition, our model captures the complex and nonlinear human behavior and inter-driver variability from novice to expert drivers, showing an interesting potential to become a steering performance predictor in future user-oriented ADAS.

Citations (1)

Summary

We haven't generated a summary for this paper yet.