Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Saliency-Regularized Deep Multi-Task Learning (2207.01117v1)

Published 3 Jul 2022 in cs.LG

Abstract: Multitask learning is a framework that enforces multiple learning tasks to share knowledge to improve their generalization abilities. While shallow multitask learning can learn task relations, it can only handle predefined features. Modern deep multitask learning can jointly learn latent features and task sharing, but they are obscure in task relation. Also, they predefine which layers and neurons should share across tasks and cannot learn adaptively. To address these challenges, this paper proposes a new multitask learning framework that jointly learns latent features and explicit task relations by complementing the strength of existing shallow and deep multitask learning scenarios. Specifically, we propose to model the task relation as the similarity between task input gradients, with a theoretical analysis of their equivalency. In addition, we innovatively propose a multitask learning objective that explicitly learns task relations by a new regularizer. Theoretical analysis shows that the generalizability error has been reduced thanks to the proposed regularizer. Extensive experiments on several multitask learning and image classification benchmarks demonstrate the proposed method effectiveness, efficiency as well as reasonableness in the learned task relation patterns.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Guangji Bai (24 papers)
  2. Liang Zhao (353 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.