Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Streaming Algorithms for Geometric Independent Set and Clique (2207.01108v1)

Published 3 Jul 2022 in cs.CG and cs.DS

Abstract: We study the maximum geometric independent set and clique problems in the streaming model. Given a collection of geometric objects arriving in an insertion only stream, the aim is to find a subset such that all objects in the subset are pairwise disjoint or intersect respectively. We show that no constant factor approximation algorithm exists to find a maximum set of independent segments or $2$-intervals without using a linear number of bits. Interestingly, our proof only requires a set of segments whose intersection graph is also an interval graph. This reveals an interesting discrepancy between segments and intervals as there does exist a $2$-approximation for finding an independent set of intervals that uses only $O(\alpha(\mathcal{I})\log |\mathcal{I}|)$ bits of memory for a set of intervals $\mathcal{I}$ with $\alpha(\mathcal{I})$ being the size of the largest independent set of $\mathcal{I}$. On the flipside we show that for the geometric clique problem there is no constant-factor approximation algorithm using less than a linear number of bits even for unit intervals. On the positive side we show that the maximum geometric independent set in a set of axis-aligned unit-height rectangles can be $4$-approximated using only $O(\alpha(\mathcal{R})\log |\mathcal{R}|)$ bits.

Citations (5)

Summary

We haven't generated a summary for this paper yet.