Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projective tilings and full-rank perfect codes (2207.00105v2)

Published 30 Jun 2022 in math.CO and cs.DM

Abstract: A tiling of a vector space $S$ is the pair $(U,V)$ of its subsets such that every vector in $S$ is uniquely represented as the sum of a vector from $U$ and a vector from $V$. A tiling is connected to a perfect codes if one of the sets, say $U$, is projective, i.e., the union of one-dimensional subspaces of $S$. A tiling $(U,V)$ is full-rank if the affine span of each of $U$, $V$ is $S$. For finite non-binary vector spaces of dimension at least $6$ (at least $10$), we construct full-rank tilings $(U,V)$ with projective $U$ (both $U$ and $V$, respectively). In particular, that construction gives a full-rank ternary $1$-perfect code of length $13$, solving a known problem. We also discuss the treatment of tilings with projective components as factorizations of projective spaces. Keywords: perfect codes, tilings, group factorization, full-rank tilings, projective geometry

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com