Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning with Swin Transformers (2206.15269v4)

Published 30 Jun 2022 in cs.LG

Abstract: Transformers are neural network models that utilize multiple layers of self-attention heads and have exhibited enormous potential in natural language processing tasks. Meanwhile, there have been efforts to adapt transformers to visual tasks of machine learning, including Vision Transformers and Swin Transformers. Although some researchers use Vision Transformers for reinforcement learning tasks, their experiments remain at a small scale due to the high computational cost. This article presents the first online reinforcement learning scheme that is based on Swin Transformers: Swin DQN. In contrast to existing research, our novel approach demonstrate the superior performance with experiments on 49 games in the Arcade Learning Environment. The results show that our approach achieves significantly higher maximal evaluation scores than the baseline method in 45 of all the 49 games (92%), and higher mean evaluation scores than the baseline method in 40 of all the 49 games (82%).

Citations (1)

Summary

We haven't generated a summary for this paper yet.