Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

POEM: Out-of-Distribution Detection with Posterior Sampling (2206.13687v1)

Published 28 Jun 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Out-of-distribution (OOD) detection is indispensable for machine learning models deployed in the open world. Recently, the use of an auxiliary outlier dataset during training (also known as outlier exposure) has shown promising performance. As the sample space for potential OOD data can be prohibitively large, sampling informative outliers is essential. In this work, we propose a novel posterior sampling-based outlier mining framework, POEM, which facilitates efficient use of outlier data and promotes learning a compact decision boundary between ID and OOD data for improved detection. We show that POEM establishes state-of-the-art performance on common benchmarks. Compared to the current best method that uses a greedy sampling strategy, POEM improves the relative performance by 42.0% and 24.2% (FPR95) on CIFAR-10 and CIFAR-100, respectively. We further provide theoretical insights on the effectiveness of POEM for OOD detection.

Citations (94)

Summary

We haven't generated a summary for this paper yet.