Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chiral symmetry: An analytic $SU(3) $ unitary matrix (2206.13493v2)

Published 27 Jun 2022 in hep-ph, hep-th, math-ph, and math.MP

Abstract: The $SU(2)$ unitary matrix $U$ employed in hadronic low-energy processes has both exponential and analytic representations, related by $ U = \exp\left[ i \mathbf{\tau} \cdot \hat{\mathbf{\pi}} \theta\,\right] = \cos\theta I + i \mathbf{\tau} \cdot \hat{\mathbf{\pi}} \sin\theta $. One extends this result to the $SU(3)$ unitary matrix by deriving an analytic expression which, for Gell-Mann matrices $\mathbf{\lambda}$, reads $ U= \exp\left[ i \mathbf{v} \cdot \mathbf{\lambda} \right] = \left[ \left( F + \tfrac{2}{3} G \right) I + \left( H \hat{\mathbf{v}} + \tfrac{1}{\sqrt{3}} G \hat{\mathbf{b}} \right) \cdot \mathbf{\lambda} \, \right] + i \left[ \left( Y + \tfrac{2}{3} Z \right) I + \left( X \hat{\mathbf{v}} + \tfrac{1}{\sqrt{3}} Z \hat{\mathbf{b}} \right) \cdot \mathbf{\lambda} \right] $, with $v_i=[\,v_1, \cdots v_8\,]$, $ b_i = d_{ijk} \, v_j \, v_k $, and factors $F, \cdots Z$ written in terms of elementary functions depending on $v=|\mathbf{v}|$ and $\eta = 2\, d_{ijk} \, \hat{v}_i \, \hat{v}_j \, \hat{v}_k /3 $. This result does not depend on the particular meaning attached to the variable $\mathbf{v}$ and the analytic expression is used to calculate explicitly the associated left and right forms. When $\mathbf{v}$ represents pseudoscalar meson fields, the classical limit corresponds to $\langle 0|\eta|0\rangle \rightarrow \eta \rightarrow 0$ and yields the cyclic structure $ U = \left{ \left[ \tfrac{1}{3} \left( 1 + 2 \cos v \right) I + \tfrac{1}{\sqrt{3}} \left( -1 + \cos v \right) \hat{\mathbf{b}}\cdot \mathbf{\lambda} \right] + i \left( \sin v \right) \hat{\mathbf{v}}\cdot \mathbf{\lambda} \right} $, which gives rise to a tilted circumference with radius $\sqrt{2/3}$ in the space defined by $I$, $\hat{\mathbf{b}}\cdot \mathbf{\lambda} $, and $\hat{\mathbf{v}}\cdot \mathbf{\lambda} $. The axial transformations of the analytic matrix are also evaluated explicitly.

Summary

We haven't generated a summary for this paper yet.