Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardness of almost embedding simplicial complexes in $\mathbb{R}^d$, II (2206.13486v1)

Published 27 Jun 2022 in math.GT, cs.CC, cs.CG, and math.CO

Abstract: A map $f: K \to \mathbb{R}d$ of a simplicial complex is an almost embedding if $f(\sigma) \cap f(\tau) = \varnothing$ whenever $\sigma, \tau$ are disjoint simplices of $K$. Fix integers $d,k \geqslant 2$ such that $k+2 \leqslant d \leqslant\frac{3k}2+1$. Assuming that the "preimage of a cycle is a cycle" we prove $\mathbf{NP}$-hardness of the algorithmic problem of recognition of almost embeddability of finite $k$-dimensional complexes in $\mathbb{R}d$. Assuming that $\mathbf{P} \ne \mathbf{NP}$ (and that the "preimage of a cycle is a cycle") we prove that the embedding obstruction is incomplete for $k$-dimensional complexes in $\mathbb{R}d$ using configuration spaces. Our proof generalizes the Skopenkov-Tancer proof of this result for $d = \frac{3k}{2} + 1$.

Summary

We haven't generated a summary for this paper yet.