Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refined regularity analysis for a Keller-Segel-consumption system involving signal-dependent motilities (2206.13327v1)

Published 27 Jun 2022 in math.AP

Abstract: We consider the Keller-Segel-type migration-consumption system involving signal-dependent motilities, $$\left{ \begin{array}{l} u_t = \Delta \big(u\phi(v)\big), \[1mm] v_t = \Delta v-uv, \end{array} \right. \qquad \qquad$$ in smoothly bounded domains $\Omega\subset\mathbb{R}n$, $n\ge 1$. Under the assumption that $\phi\in C1([0,\infty))$ is positive on $[0,\infty)$, and for nonnegative initial data from $(C0(\overline{\Omega}))\star \times L\infty(\Omega)$, previous literature has provided results on global existence of certain very weak solutions with possibly quite poor regularity properties, and on large time stabilization toward semitrivial equilibria with respect to the topology in $(W{1,2}(\Omega))\star \times L\infty(\Omega)$. The present study reveals that solutions in fact enjoy significantly stronger regularity features when $0<\phi\in C3([0,\infty))$ and the initial data belong to $(W{1,\infty}(\Omega))2$: It is firstly shown, namely, that then in the case $n\le 2$ an associated no-flux initial-boundary value problem even admits a global classical solution, and that each of these solutions smoothly stabilizes in the sense that as $t\to\infty$ we have $$ \begin{align*} u(\cdot,t) \to \frac{1}{|\Omega|}\int_\Omega u_0 \qquad \text{ and } \qquad v(\cdot,t)\to 0 \qquad \qquad (\star) \end{align*}$$ even with respect to the norm in $L\infty(\Omega)$ in both components. In the case when $n\ge 3$, secondly, some genuine weak solutions are found to exist globally, inter alia satisfying $\nabla u\in L\frac{4}{3}_{loc}(\overline{\Omega}\times [0,\infty);\mathbb{R}n)$. In the particular three-dimensional setting, any such solution is seen to become eventually smooth and to satisfy ($\star$).

Summary

We haven't generated a summary for this paper yet.