Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Humans are not Boltzmann Distributions: Challenges and Opportunities for Modelling Human Feedback and Interaction in Reinforcement Learning (2206.13316v1)

Published 27 Jun 2022 in cs.LG, cs.HC, and stat.ML

Abstract: Reinforcement learning (RL) commonly assumes access to well-specified reward functions, which many practical applications do not provide. Instead, recently, more work has explored learning what to do from interacting with humans. So far, most of these approaches model humans as being (nosily) rational and, in particular, giving unbiased feedback. We argue that these models are too simplistic and that RL researchers need to develop more realistic human models to design and evaluate their algorithms. In particular, we argue that human models have to be personal, contextual, and dynamic. This paper calls for research from different disciplines to address key questions about how humans provide feedback to AIs and how we can build more robust human-in-the-loop RL systems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.