Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A two-stage full-band speech enhancement model with effective spectral compression mapping (2206.13136v1)

Published 27 Jun 2022 in cs.SD and eess.AS

Abstract: The direct expansion of deep neural network (DNN) based wide-band speech enhancement (SE) to full-band processing faces the challenge of low frequency resolution in low frequency range, which would highly likely lead to deteriorated performance of the model. In this paper, we propose a learnable spectral compression mapping (SCM) to effectively compress the high frequency components so that they can be processed in a more efficient manner. By doing so, the model can pay more attention to low and middle frequency range, where most of the speech power is concentrated. Instead of suppressing noise in a single network structure, we first estimate a spectral magnitude mask, converting the speech to a high signal-to-ratio (SNR) state, and then utilize a subsequent model to further optimize the real and imaginary mask of the pre-enhanced signal. We conduct comprehensive experiments to validate the efficacy of the proposed method.

Summary

We haven't generated a summary for this paper yet.