Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A $C^{0}$ finite element approximation of planar oblique derivative problems in non-divergence form (2206.12880v1)

Published 26 Jun 2022 in math.NA and cs.NA

Abstract: This paper proposes a $C{0}$ (non-Lagrange) primal finite element approximation of the linear elliptic equations in non-divergence form with oblique boundary conditions in planar, curved domains. As an extension of [Calcolo, 58 (2022), No. 9], the Miranda-Talenti estimate for oblique boundary conditions at a discrete level is established by enhancing the regularity on the vertices. Consequently, the coercivity constant for the proposed scheme is exactly the same as that from PDE theory. The quasi-optimal order error estimates are established by carefully studying the approximation property of the finite element spaces. Numerical experiments are provided to verify the convergence theory and to demonstrate the accuracy and efficiency of the proposed methods.

Summary

We haven't generated a summary for this paper yet.