Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes (2206.12821v1)

Published 26 Jun 2022 in stat.ME

Abstract: High-frequency financial data can be collected as a sequence of curves over time; for example, as intra-day price, currently one of the topics of greatest interest in finance. The Functional Data Analysis framework provides a suitable tool to extract the information contained in the shape of the daily paths, often unavailable from classical statistical methods. In this paper, a novel goodness-of-fit test for autoregressive Hilbertian (ARH) models, with unknown and general order, is proposed. The test imposes just the Hilbert-Schmidt assumption on the functional form of the autocorrelation operator, and the test statistic is formulated in terms of a Cram\'er-von Mises norm. A wild bootstrap resampling procedure is used for calibration, such that the finite sample behavior of the test, regarding power and size, is checked via a simulation study. Furthermore, we also provide a new specification test for diffusion models, such as Ornstein-Uhlenbeck processes, illustrated with an application to intra-day currency exchange rates. In particular, a two-stage methodology is proffered: firstly, we check if functional samples and their past values are related via ARH(1) model; secondly, under linearity, we perform a functional F-test.

Summary

We haven't generated a summary for this paper yet.