Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Learning Augmented Binary Search Trees (2206.12110v1)

Published 24 Jun 2022 in cs.DS

Abstract: A treap is a classic randomized binary search tree data structure that is easy to implement and supports O(\log n) expected time access. However, classic treaps do not take advantage of the input distribution or patterns in the input. Given recent advances in algorithms with predictions, we propose pairing treaps with machine advice to form a learning-augmented treap. We are the first to propose a learning-augmented data structure that supports binary search tree operations such as range-query and successor functionalities. With the assumption that we have access to advice from a frequency estimation oracle, we assign learned priorities to the nodes to better improve the treap's structure. We theoretically analyze the learning-augmented treap's performance under various input distributions and show that under those circumstances, our learning-augmented treap has stronger guarantees than classic treaps and other classic tree-based data structures. Further, we experimentally evaluate our learned treap on synthetic datasets and demonstrate a performance advantage over other search tree data structures. We also present experiments on real world datasets with known frequency estimation oracles and show improvements as well.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.