Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a class of singular Hamiltonian Choquard-type elliptic systems with critical exponential growth (2206.12086v2)

Published 24 Jun 2022 in math.AP

Abstract: In this paper, we study the following Hamiltonian Choquard-type elliptic systems involving singular weights \begin{eqnarray*} \begin{aligned}\displaystyle \left{ \arraycolsep=1.5pt \begin{array}{ll} -\Delta u + V(x)u = \Big(I_{\mu_{1}}\ast \frac{G(v)}{|x|{\alpha}}\Big)\frac{g(v)}{|x|{\alpha}} \ \ \ & \mbox{in} \ \mathbb{R}{2},\[2mm] -\Delta v + V(x)v = \Big(I_{\mu_{2}}\ast \frac{F(u)}{|x|{\beta}}\Big)\frac{f(u)}{|x|{\beta}} \ \ \ & \mbox{in} \ \mathbb{R}{2}, \end{array} \right. \end{aligned} \end{eqnarray*} where $\mu_{1},\mu_{2}\in(0,2)$, $0<\alpha \leq \frac{\mu_{1}}{2}$, $0<\beta \leq \frac{\mu_{2}}{2}$, $V(x)$ is a continuous positive potential, $I_{\mu_{1}}$ and $I_{\mu_{2}}$ denote the Riesz potential, $\ast$ indicates the convolution operator, $F(s),G(s)$ are the primitive of $f(s),g(s)$ with $f(s),g(s)$ have exponential growth in $\mathbb{R}{2}$. Using the linking theorem and variational methods, we establish the existence of solutions to the above problem.

Summary

We haven't generated a summary for this paper yet.