Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensor-Assisted Rate Adaptation for UAV MU-MIMO Networks (2206.11565v1)

Published 23 Jun 2022 in cs.NI

Abstract: Propelled by multi-user MIMO (MU-MIMO) technology, unmanned aerial vehicles (UAVs) as mobile hotspots have recently emerged as an attractive wireless communication paradigm. Rate adaptation (RA) becomes indispensable to enhance UAV communication robustness against UAV mobility-induced channel variances. However, existing MU-MIMO RA algorithms are mainly designed for ground communications with relatively stable channel coherence time, which incurs channel measurement staleness and sub-optimal rate selections when coping with highly dynamic air-to-ground links. In this paper, we propose SensRate, a new uplink MU-MIMO RA algorithm dedicated for low-altitude UAVs, which exploits inherent onboard sensors used for flight control with no extra cost. We propose a novel channel prediction algorithm that utilizes sensor-estimated flight states to assist channel direction prediction for each client and estimate inter-user interference for optimal rates. We provide an implementation of our design using a commercial UAV and show that it achieves an average throughput gain of 1.24\times and 1.28\times compared with the bestknown RA algorithm for 2- and 3-antenna APs, respectively

Citations (4)

Summary

We haven't generated a summary for this paper yet.