Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Certifiable 3D Object Pose Estimation: Foundations, Learning Models, and Self-Training (2206.11215v4)

Published 22 Jun 2022 in cs.CV, cs.LG, and cs.RO

Abstract: We consider a certifiable object pose estimation problem, where -- given a partial point cloud of an object -- the goal is to not only estimate the object pose, but also to provide a certificate of correctness for the resulting estimate. Our first contribution is a general theory of certification for end-to-end perception models. In particular, we introduce the notion of $\zeta$-correctness, which bounds the distance between an estimate and the ground truth. We show that $\zeta$-correctness can be assessed by implementing two certificates: (i) a certificate of observable correctness, that asserts if the model output is consistent with the input data and prior information, (ii) a certificate of non-degeneracy, that asserts whether the input data is sufficient to compute a unique estimate. Our second contribution is to apply this theory and design a new learning-based certifiable pose estimator. We propose C-3PO, a semantic-keypoint-based pose estimation model, augmented with the two certificates, to solve the certifiable pose estimation problem. C-3PO also includes a keypoint corrector, implemented as a differentiable optimization layer, that can correct large detection errors (e.g. due to the sim-to-real gap). Our third contribution is a novel self-supervised training approach that uses our certificate of observable correctness to provide the supervisory signal to C-3PO during training. In it, the model trains only on the observably correct input-output pairs, in each training iteration. As training progresses, we see that the observably correct input-output pairs grow, eventually reaching near 100% in many cases. Our experiments show that (i) standard semantic-keypoint-based methods outperform more recent alternatives, (ii) C-3PO further improves performance and significantly outperforms all the baselines, and (iii) C-3PO's certificates are able to discern correct pose estimates.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.