Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Signature Codes for a Noisy Adder Multiple Access Channel (2206.10735v2)

Published 21 Jun 2022 in cs.IT and math.IT

Abstract: In this work, we consider $q$-ary signature codes of length $k$ and size $n$ for a noisy adder multiple access channel. A signature code in this model has the property that any subset of codewords can be uniquely reconstructed based on any vector that is obtained from the sum (over integers) of these codewords. We show that there exists an algorithm to construct a signature code of length $k = \frac{2n\log{3}}{(1-2\tau)\left(\log{n} + (q-1)\log{\frac{\pi}{2}}\right)} +\mathcal{O}\left(\frac{n}{\log{n}(q+\log{n})}\right)$ capable of correcting $\tau k$ errors at the channel output, where $0\le \tau < \frac{q-1}{2q}$. Furthermore, we present an explicit construction of signature codewords with polynomial complexity being able to correct up to $\left( \frac{q-1}{8q} - \epsilon\right)k$ errors for a codeword length $k = \mathcal{O} \left ( \frac{n}{\log \log n} \right )$, where $\epsilon$ is a small non-negative number. Moreover, we prove several non-existence results (converse bounds) for $q$-ary signature codes enabling error correction.

Summary

We haven't generated a summary for this paper yet.