MASER: Multi-Agent Reinforcement Learning with Subgoals Generated from Experience Replay Buffer (2206.10607v1)
Abstract: In this paper, we consider cooperative multi-agent reinforcement learning (MARL) with sparse reward. To tackle this problem, we propose a novel method named MASER: MARL with subgoals generated from experience replay buffer. Under the widely-used assumption of centralized training with decentralized execution and consistent Q-value decomposition for MARL, MASER automatically generates proper subgoals for multiple agents from the experience replay buffer by considering both individual Q-value and total Q-value. Then, MASER designs individual intrinsic reward for each agent based on actionable representation relevant to Q-learning so that the agents reach their subgoals while maximizing the joint action value. Numerical results show that MASER significantly outperforms StarCraft II micromanagement benchmark compared to other state-of-the-art MARL algorithms.
- Jeewon Jeon (1 paper)
- Woojun Kim (20 papers)
- Whiyoung Jung (7 papers)
- Youngchul Sung (48 papers)