Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal incompatible Korn-Maxwell-Sobolev inequalities in all dimensions (2206.10373v2)

Published 17 Jun 2022 in math.AP

Abstract: We characterise all linear maps $\mathcal{A}\colon\mathbb{R}{n\times n}\to\mathbb{R}{n\times n}$ such that, for $1\leq p<n$, \begin{align*} |P|{L{p{*}}(\mathbb{R}{n})}\leq c\,\Big(|\mathcal{A}[P]|{L{p{*}}(\mathbb{R}{n})}+|\mathrm{Curl} P|{L{p}(\mathbb{R}{n})} \Big) \end{align*} holds for all compactly supported $P\in C{c}{\infty}(\mathbb{R}{n};\mathbb{R}{n\times n})$, where $\mathrm{Curl} P$ displays the matrix curl. Being applicable to incompatible, that is, non-gradient matrix fields as well, such inequalities generalise the usual Korn-type inequalities used e.g. in linear elasticity. Different from previous contributions, the results gathered in this paper are applicable to all dimensions and optimal. This particularly necessitates the distinction of different constellations between the ellipticities of $\mathcal{A}$, the integrability $p$ and the underlying space dimensions $n$, especially requiring a finer analysis in the two-dimensional situation.

Summary

We haven't generated a summary for this paper yet.