Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exceedance Probability Forecasting via Regression for Significant Wave Height Prediction (2206.09821v4)

Published 20 Jun 2022 in stat.ML and cs.LG

Abstract: Significant wave height forecasting is a key problem in ocean data analytics. This task affects several maritime operations, such as managing the passage of vessels or estimating the energy production from waves. In this work, we focus on the prediction of extreme values of significant wave height that can cause coastal disasters. This task is framed as an exceedance probability forecasting problem. Accordingly, we aim to estimate the probability that the significant wave height will exceed a predefined critical threshold. This problem is usually solved using a probabilistic binary classification model or an ensemble of forecasts. Instead, we propose a novel approach based on point forecasting. Computing both type of forecasts (binary probabilities and point forecasts) can be useful for decision-makers. While a probabilistic binary forecast streamlines information for end-users concerning exceedance events, the point forecasts can provide additional insights into the upcoming future dynamics. The procedure of the proposed solution works by assuming that the point forecasts follow a distribution with the location parameter equal to that forecast. Then, we convert these point forecasts into exceedance probability estimates using the cumulative distribution function. We carried out experiments using data from a smart buoy placed on the coast of Halifax, Canada. The results suggest that the proposed methodology is better than state-of-the-art approaches for exceedance probability forecasting.

Summary

We haven't generated a summary for this paper yet.